- Introduzione al fenomeno dei Big Data
- Database
- Metodologie per Big data
- Data mining
- Lab & tools
Introduzione
• Introduzione al fenomeno dei Big Data
Database
• Introduzione ai database: modelli E-R, SQL
• Distributed query evaluation, NoSQL databases, graph databases
Metodologie per I Big data
• Frameworks di programmazione: MapReduce/Hadoop, Spark
Data mining
• Association Analysis
• Clustering
Graph Analytics (metriche di centralità, scale-free/Power-law graphs, fenomeno dello small world, uncertain graphs)
• Similarity and diversity search
Lab & tools
• strumenti e metodologie per collezionare, processare, visualizzare ed analizzare grandi quantitative di dati (Big Data).
o estrarre dati non strutturati dal web (import.io, kimono, etc.)
o gestire e manipolare dati in forma tabulare (google spreadsheet, excel, etc.)
o esplorare e presentare dati statici (RAWGraphs, Gephi, illustrator, etc.)
o esplorare e costruire visualizzazioni di dati interattive (Tableau Public, Carto)
SEDE DI CHIETI
Via dei Vestini,31
Centralino 0871.3551
SEDE DI PESCARA
Viale Pindaro,42
Centralino 085.45371
email: info@unich.it
PEC: ateneo@pec.unich.it
Partita IVA 01335970693