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Abstract: To exchange knowledge, it is necessary to be physically close and share 
some expertise. We aim to combine a geographical adjacency matrix with a non-
geographical one to investigate the existence of spillovers between firms. The latter 
matrix is designed to replicate semantic proximity and constructed using web-derived 
data, capturing firms’ expertise about industrial specializations and adopted 
technologies. We maintain and test that startups generate knowledge spillovers, which 
positively impact the performance of their neighbours. Results show that firm’s economic 
performance depends not only on its intrinsic characteristics such as its initial scale or 
growth stage but also, and more appreciably, on the spillover effects that arise from both 
geographical and semantic proximity. These effects were most pronounced when both 
forms of proximity were combined optimally. 
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1. Introduction 
The advantages deriving from being physically nearby are unanimously accepted in the 
literature: geographical proximity facilitates informal interactions, collaboration, and the 
transfer of knowledge (Audretsch and Feldman, 1996). However, to exchange knowledge 
effectively, it is also essential to share a certain level of expertise (McCann and Ortega-
Argilés, 2016).  
Most of the research on proximity and knowledge exchange is grounded in robust theoretical 
frameworks, such as related variety (Frenken et al., 2007; Neffke and Henning, 2008), 
absorptive capacity (Cohen and Levinthal, 1990; Fritsch and Kublina, 2018), and 
recombinant innovation (Zhang et al., 2019; Li et al., 2021). These studies consistently 
highlight the importance of a common knowledge base to foster effective interactions 
(Nooteboom et al., 2007). That is why additional dimensions of non-geographical adjacency, 
such as cognitive, industrial and technological proximity, come into play (Cortinovis et al., 
2020; Amoroso et al., 2023).  
Scholars often incorporate such non-geographical dimensions of proximity alongside the 
geographical one, since their combinations may offer deeper insights into the investigation 
of knowledge flows (Liu and Ma, 2019; Lopolito et al., 2022; Panori at al., 2022). In this 
paper, we aim to combine a geographical adjacency matrix with a non-geographical one to 
investigate the existence of spillover effects between companies. The latter matrix is 
designed to replicate semantic proximity, capturing firms’ expertise about specializations 
and technologies. Our contribution to the literature is twofold. Firstly, we develop a new 
semantic measure, based on web-derived data, to assess how similar companies are in 
terms of their industrial specializations and technological focus. This adds to measures built 
on industry and patent classification systems, which often fail to reflect firms’ real and 
evolving activities, especially in technological sectors, due to their rigidity and slow updates. 
Relying on a single code or outdated taxonomy can misrepresent firms’ profiles, limiting the 
accuracy of proximity and relatedness measures (Nathan and Rosso, 2015; Marra and 
Baldassari, 2022). Secondly, to the best of our knowledge, this is one of the few empirical 
attempts to apply a convex combination of a geographical adjacency matrix with a semantic 
proximity matrix to model spillover effects between firms (Sheng and LeSage, 2021; 
Debarsy and LeSage, 2022). The choice is justified by the ability to capture, more rigorously, 
interactions between firms (Parent and LeSage, 2008; Debarsy and LeSage, 2021).  
By combining geographical and semantic proximity matrices, we posit that firms generate 
knowledge spillovers, which positively impact the performance of their neighbours (Ebert et 
al., 2019; Zhou et al., 2019a; Martin-Rios et al., 2022). We test our hypothesis using a 
parsimonious model of firm performance, with sales growth as the dependent variable and 
a few covariates: initial turnover (used as a proxy to identify scaleups, i.e., startups with rapid 
revenue growth), average number of employees (serving as a proxy for the firm’s knowledge 
base, with each employee contributing distinct expertise), and growth stage (to distinguish 
between early-stage and more mature firms). The adopted framework is rooted in spatial 
econometrics, emphasizes local rather than global indirect effects, and avoids potentially 
misleading endogenous spatial lags (Elhorst, 2014; LeSage and Pace, 2009). By preventing 
endogeneity, the model enhances interpretability and reduces the risk of biases associated 
with omitted variables (Corrado and Fingleton, 2012). 
Our results show that firm’s economic performance depends not only on its intrinsic 
characteristics such as its initial scale or growth stage but also, and appreciably, on the 
spillover effects that arise from both geographical and semantic proximity. These effects 
were most pronounced when both forms of proximity were combined optimally. 
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The paper is organized as follows. Section 2 reviews the relevant literature, focusing on 
empirical studies that integrate both geographical and non-geographical adjacency 
matrices. Section 3 introduces the dataset, which includes information from the Dealroom 
database on Swedish tech companies, supplemented by additional text data gathered from 
the web. Section 4 details the methodology, including the construction of the semantic 
proximity measure and the integration of both geographical and semantic matrices. Section 
5 presents and interprets the results, and provides some robustness checks. Finally, Section 
6 concludes by addressing limitations and suggesting avenues for future research. 
 
 
2. Literature 
Companies located near one another may enhance their economic performance by enabling 
faster and more efficient resource sharing, reducing transaction costs, and improving access 
to specialized labour and suppliers (Nilsson, 2019; Sharma et al., 2024). Moreover, firms 
located in close geographical proximity are better positioned to benefit from knowledge 
spillovers (Breschi and Lissoni, 2001; Döring and Schnellenbach, 2006). As widely 
discussed across various theoretical frameworks, such as related variety, absorptive 
capacity, and recombinant innovation, knowledge exchange requires not only physical 
proximity but also a shared expertise between firms.  
 
2.1. Geographical and non-geographical proximity 
The literature on the related variety strand shows how firms benefit from a diversity of 
industries or knowledge bases that are similar or ‘related’ in nature, which contributes to 
regional growth and development (Frenken et al., 2007; Van Oort et al., 2015; Cortinovis 
and Van Oort, 2015). Absorptive capacity emphasizes that firms must possess a certain 
level of prior knowledge and internal expertise to effectively absorb and integrate external 
knowledge (Cohen and Levinthal, 1990). Recombinant innovation emphasizes how firms 
generate new innovations by recombining existing knowledge in novel ways, a process that 
occurs in the presence of cognitive, industrial, or technological proximity (Li et al., 2021; 
Zhang et al., 2019).  
What emerges from these different strands of literature is that companies operating in the 
same or similar sectors are better positioned to collaborate and exchange knowledge, 
thereby fostering innovation and gaining competitive advantages (Quatraro, 2010; Frenken 
et al., 2007; Neffke and Henning, 2008). This proximity fosters synergies because firms with 
expertise on similar specializations or production processes often face comparable 
challenges and can jointly solve them more efficiently. Losurdo et al. (2019) propose an 
original measure of industrial specializations in digital sectors, moving away from activity 
codes and employing information on adopted technologies. Davids and Frenken (2018) 
argue about the role of different proximity dimensions, such as cognitive and organizational, 
depending on the stage of product development, distinguishing between research, 
development, and marketing phases. Literature on technological proximity highlights how 
firms that adopt similar technologies benefit from each other’s advancements and 
innovations (Aldieri, 2013; Kogler et al., 2013; McCann, 2014). Such a shared technological 
foundation allows for easier knowledge transfer, enabling firms to leverage external 
innovations more quickly and effectively. Technological proximity can lead to more frequent 
and productive collaborations, as firms with overlapping capabilities are more likely to 
engage in cooperative research and development (R&D), share technological insights, or 
develop complementary products. Whittle (2020) shows that the production of technological 
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knowledge exhibits strong path dependency, with firms more likely to diversify 
concentrically.  
 
2.2. Combining geographical and non-geographical proximity 
Researchers have increasingly explored the advantages of using multiple proximity 
dimensions to gain more insights about how firms exchange knowledge (Boschma et al., 
2009). While geographical proximity traditionally facilitates face-to-face interactions and 
informal exchanges, it alone cannot fully capture the complexity of knowledge flows. 
Similarity in the firms’ knowledge base and expertise enable to communicate effectively and 
absorb information reciprocally.  
Liu and Ma (2019) investigate the interaction between geographical and technological 
proximity in recombinant innovation, finding that low technological proximity within dense 
R&D regions enhances the potential for innovation. Golra et al. (2024) study the role of 
informal networks in manufacturing clusters, showing that geographical and non-
geographical proximities play distinct roles in product and process innovation networks. Li 
et al. (2021) explore the relationship between regional co-location and the combination of 
unrelated technologies in solar photovoltaics, suggesting that regional proximity fosters the 
recombination of diverse technologies.  
Our work contributes to the literature by adopting a methodology that gives equal importance 
to the geographical and semantic dimensions, rather than reducing the former to a simple 
classification of firms within the same territorial unit or to geographic contiguity between 
administrative areas. By combining different layers of proximity, scholars argue whether and 
to what extent firms can leverage commonalities, enhance innovation, and perform 
successfully. Jespersen et al. (2018) show that technological proximity plays a key role in 
bridging geographical and market distances, enhancing the potential for collaboration and 
innovation. Cao et al. (2019) investigate the interactions between different forms of 
proximity, finding that some dimensions can offset the lack of geographical proximity, while 
others support scientific collaboration. Multiple integrated layers allow for a deeper analysis 
of knowledge spillovers (Lopolito et al., 2022; Panori et al., 2022). Marra et al. (2024) provide 
a new methodology to measure business proximity using text data, compare it with standard 
measures based on activity codes, and propose a spatial model to account simultaneously 
for geographical and business proximity.  
 
2.3. Linking proximity and performance 
There is an extensive literature linking proximity to firms’ performance (Tubiana et al., 2022; 
Martin-Rios et al, 2022). Both industrial and technological proximity have been shown to 
enhance firm performance: firms with higher degrees of relatedness are often better 
positioned to innovate and maintain a competitive edge in their respective markets 
(Cortinovis et al., 2020; Content et al., 2022; Jespersen et al., 2018). Freitas et al. (2024) 
show that technological proximity between existing and new industries enhances the chance 
of economic success. Colombelli and Quatraro (2019) show that green start-ups benefit 
from diverse and heterogeneous knowledge sources, particularly in related and 
complementary technological fields. Aarstad et al. (2016) find that firms in related but not 
identical fields benefit positively in terms of innovation capacity, while firms from entirely 
different sectors suffer productivity losses due to insufficient knowledge exchange. Grillitsch 
and Nilsson (2019) study knowledge spillovers on high and low growth firms, finding that 
such externalities enable the former to surge ahead while helping low growth firms to catch 
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up. Abbasiharofteh et al. (2023) show that strong cross-field connections are positively 
correlated with firms’ innovation levels. 
Sometimes, models employ both the geographical and non-geographical dimensions. 
Boschma et al. (2009) observe that knowledge spillovers between neighbouring firms 
enhance productivity, but they also point out that when firms are too similar, the effect can 
be detrimental. Similarly, Timmermans and Boschma (2014) highlight the need for an 
optimal balance to effectively leverage proximity and inter-firm relationships. Kaneva et al. 
(2023) explore the roles of spatial and non-spatial proximities in knowledge creation, finding 
that cognitive proximity boosts knowledge spillovers and innovation, whereas technological 
proximity does not. Shkolnykova (2023) examines how different proximity dimensions 
impact the innovation performance of biotechnology SMEs in Germany, showing a mixed 
impact of geographical and cognitive proximity on innovation. Marra et al. (2024) employ 
both geographical and non-geographical matrices, assigning the former to the error term 
and deriving the latter from textual data, to investigate spillovers on firms’ sales growth.  
Building on the existing literature, we adopt the convex combination framework, which 
enables the integration of multiple proximity structures, each weighted by its own parameter 
that captures its relative contribution (Debrasy and LeSage, 2021).  
 
 
3. Data 
We gathered data on Sweden’s tech companies from Dealroom, a commercial database 
that integrates machine learning and data engineering with user-submitted information and 
verification processes.  
Sweden has emerged as one of Europe’s most successful tech ecosystems, particularly in 
the startup realm. The country’s entrepreneurial landscape is supported by government 
funding and investments aimed at nurturing startups and scaleups, alongside broader 
initiatives designed to foster innovation. Sweden has solidified its status as a leading 
European tech hub, with its tech companies collectively valued at approximately $239 billion, 
including 41 unicorns (that is, companies valued at over $1 billion). In 2023, venture capital 
investments in the country reached around €4.7 billion (Dealroom, 2024).  
The sample of firms was defined based on the dataset built by Dealroom, as part of a report 
produced in partnership with Startup Sweden, the Swedish Agency for Economic and 
Regional Growth, the Swedish Institute, Business Sweden, and Vinnova, on a 2024 survey 
(Dealroom, 2024).  
The geographical distribution of the observed companies is concentrated in and around the 
largest cities in the south of Sweden such as Stockholm, Gothenburg, and Malmö (Figure 
1).  
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Figure 1: Geographical distribution of firms 

 
It reflects the overall distribution of the 6094 funded companies of the Sweden’s tech 
ecosystem. Table 1 shows the correspondence between the distributions of tech firms in 
Sweden by county (NUTS3 level). 
 

Table 1. Distribution of tech firms in Sweden by county (NUTS3): population vs. sample. 
 

County Population Sample 
Stockholm 52.59% 55.68% 
Västra Götaland 13.37% 12.99% 
Skåne 12.50% 12.18% 
Uppsala 3.23% 3.25% 
Örebro 2.82% 2.44% 
Östergötland 2.67% 2.44% 
Västerbotten 1.84% 1.79% 
Norrbotten 1.26% 1.14% 
Kalmar  1.15% 0.97% 
Halland 1.08% 0.97% 
Västmanland 1.00% 0.81% 
Jönköping 0.97% 0.81% 
Blekinge 0.89% 0.49% 
Västernorrland 0.84% 0.81% 
Gävleborg 0.79% 0.81% 
Värmland 0.77% 0.81% 
Kronoberg 0.54% 0.32% 
Jämtland 0.53% 0.32% 
Dalecarlia 0.49% 0.32% 
Södermanland 0.36% 0.32% 
Gotland 0.31% 0.32% 
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Using hyperlinks to corporate websites, we generated text data for the observed units. As 
detailed below, we use this text data to compute a measure of semantic proximity, reflecting 
firms’ expertise in industrial specializations and adopted technologies, to investigate 
spillover effects.  
Observed firms are characterized by a strong technological focus and operate across a wide 
range of sectors. For the statistical model of firms’ performance, we focus on a subset of 
616 companies with available data on sales, number of employees, and geographical 
location. The sample is robust and representative of the entire population of tech firms in 
Sweden, ensuring comprehensive coverage not only in terms of geographical distribution 
but also in terms of company size and industrial sector, in line with standard statistical 
practices (Autant-Bernard and LeSage, 2011).  
Table 2 reports the distribution of firms by size, while Table 3 presents the breakdown across 
different tech industries. 
 

Table 2. Distribution of tech firms in Sweden by firm size: population vs. sample. 
 

Size Population Sample 
Micro ( <10 employees) 25.01% 20.72% 
Small (10-50 employees)  51.08% 52.92% 
Medium (50-250 employees)  19.33% 22.47% 
Large (> 250 employees)  4.58% 3.89% 

 
 

Table 3. Distribution of tech firms in Sweden by industry: population vs. sample. 
 

Industries Population Sample 
Software enterprise 14.00% 17.09% 
Health 14.74% 13.03% 
Fintech 9.70% 11.19% 
Energy 8.80% 5.78% 
Media 4.78% 5.41% 
Marketing 5.41% 5.41% 
Real estate 4.30% 4.67% 
Transportation 5.47% 3.93% 
Gaming 3.33% 3.56% 
Food 3.81% 3.44% 
Security 2.29% 2.95% 
Education 2.01% 2.70% 
Fashion 2.91% 2.46% 
Home living 2.49% 2.21% 
Telecom 1.80% 2.09% 
Jobs recruitment 1.87% 1.84% 
Sports 1.87% 1.72% 
Other 10.74% 10.83% 
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4. Methodology 
This Section is divided into three subsections. The first subsection outlines the steps taken 
to construct the semantic matrix. The second subsection explains the methodology for 
combining the geographical and semantic matrices. The third subsection details the 
procedure for selecting the optimal model specification. 
 
4.1. The semantic proximity matrix 
Industry codes raise several issues. For example, when companies are established, they 
typically declare the activity code that most closely matches their business model and 
expertise. However, this declared code often fails to accurately reflect the firm’s actual 
activities, especially as the company evolves expanding into new markets, developing new 
products and services, or building novel capabilities. Moreover, these codes are rarely 
updated as firms shift their specializations. 
Using a single activity code to characterize a firm’s activity is particularly problematic for 
technological companies, which often change strategies rapidly and operate across sectors. 
Even though classification systems are periodically revised, they struggle to keep up with 
emerging business trends. There is often a trade-off between capturing the novelty of rapidly 
changing industries and the need to recognize and formalize these activities through official 
classification. The same applies to technological classes, within which patents are registered 
and used to define a firm’s technological profile and, consequently, to estimate their 
technological proximity. As a result, current industry and patent classification systems tend 
to lag behind real-world dynamics and are often too rigid to adequately capture modern 
industrial and technological complexity. 
Accordingly, we use web data to profile companies with respect to their expertise about 
industrial specializations and adopted technologies (Marra et al., 2024).  
The body of literature leveraging textual descriptions of industrial activities and technological 
advancements, such as those found on company websites and other online sources, is 
steadily growing (Nathan and Rosso, 2015; Papagiannidis et al., 2017; Cicerone et al., 
2024). Beyond the technical aspects, what we aim to highlight here is the broad and diverse 
range of proposed applications. 
Nathan and Rosso (2015) illustrate how text data can deepen our understanding of digital 
industries. Kinne and Lenz (2021) demonstrate the ability of text analysis and big data to 
uncover collaboration networks, supply chains, and innovative outcomes. Qin et al. (2021) 
use topic modelling for measuring cognitive proximity by mining patent description texts. 
Peng et al. (2023) identify critical technologies through text analysis to assist firms in 
discovering technology opportunities. Zhou et al. (2019b) detect typical research patterns to 
identify technologies for effective technological recombination. Qi et al. (2022) investigate 
partner selection for collaborative innovation by mining the content of patent documents. 
Marra et al. (2020) use text data provided by Crunchbase to rationalize merger and 
acquisition strategies in high-tech industries. Russo et al. (2022) map the potential 
application of Internet of Things technologies by using textual analysis to identify NACE 
codes associated with five technological domains. Similarly, with respect to artificial 
intelligence, Kinne and Axenbeck (2020) employ text data from over two million company 
websites to discover an emerging innovation ecosystem. Petralia (2020) develops a 
complex indicator to capture the key features of general-purpose technologies in patent 
data. Marra and Baldassari (2022) classify firms and identify technological trajectories 
across industries using text data from company websites. Dahlke et al. (2024) train a 
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transformer language model on text data from over one million websites to identify firm-level 
AI adoption and its relation to firms’ performance. 
The methodology for the construction of the semantic proximity matrix consists of a few 
steps (Marra and Baldassari, 2022).  
We initiate the profiling process by retrieving indexed textual content from company websites 
using structured search engine queries. This step ensures that we gather firm-level 
information that is up-to-date and self-described, thus reflecting the company’s current 
positioning. Then, keyword extraction allows to isolate a first set of specific terms (‘entities’) 
that capture the firm’s core industrial specializations and technologies. 
To enable comparability across firms, we apply Latent Dirichlet Allocation (LDA), a well-
established probabilistic topic modeling technique. LDA effectively identifies latent topics 
providing a structured representation of firms’ technological and industrial domains. LDA 
allows us to assign broader thematic categories (‘topics’), facilitating higher-level 
generalization while preserving relevant detail. This approach enables scalable analysis 
across large textual datasets and reduces dimensionality while capturing meaningful 
patterns in firms’ language use. Moreover, by mapping firms onto a common set of topics, 
LDA increases informational redundancy across otherwise heterogeneous textual 
descriptions, thereby enhancing comparability and enabling the identification of proximity 
and spillovers based on shared semantic content. 
The semantic matrix is inherently sensitive to the quality of textual data available for each 
firm. Poor or sparse firm-level information can result in less accurate representations. Where 
entity-level data is insufficient (specifically, when the profile contained two or fewer 
keywords, typically due to limited publicly available textual content), we conduct a semantic 
enrichment process. This is justified to avoid the exclusion of otherwise relevant firms and 
to prevent bias due to missing data. The enrichment is performed using Generative Pre-
trained Transformer or GPT. These tools allow us to augment the original profiles with 
semantically coherent terms, enhancing both the internal consistency and the external 
validity of firm characterizations. This enrichment was applied in a limited and careful 
manner to minimize artificial manipulation and preserve the integrity of the original data.  
Then, keywords are pre-processed using standard natural language processing (NLP) 
techniques, such as tokenization, lemmatization, and stop-word removal.  
Table 4 provides a couple of examples.  
Firm X is assigned a set of entities that describe its industrial specialization and 
technological focus, as well as a set of more general topics capturing its broader profile. In 
contrast, Firm Y shows a limited number of entities due to the scarce information on its 
website, which also results in a smaller number of extracted topics. In such cases, the 
semantic enrichment step allows to complete the profile by integrating keywords. 
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Table 4. Example of firm-level profiling. 
 

Firm Entities Topics Semantics 

X 

financial services, 
fraud detection, cloud 
computing, real time 

processing, SaaS 

enterprise software 
solutions, fraud 
analytics, digital 

banking, real-time data 

 

Y neural networks, credit 
scoring 

financial services, data 
analytics, artificial 

intelligence  

risk assessment, credit 
risk modeling, machine 

learning, predictive 
modeling 

 
 
Each firm is assigned a final vector of tokens, which is used to calculate the cosine similarity 
for each pair of firms. Cosine similarity is well-suited as it captures similarity in orientation 
rather than scale, making it robust to variations in vectors length. In addition, it allows for a 
refined comparison of semantic content, even when firms differ significantly in the quantity 
of textual information available. Its computational efficiency makes it particularly suitable for 
large-scale pairwise comparisons across extensive firm datasets. 
Lastly, in line with Boschma (2005) and Nooteboom et al. (2007), we convert the cosine 
similarity’s linear relationships into an inverted-U shaped curve, that is our semantic 
proximity matrix, meant to replicate the chance of knowledge exchange. This transformation 
aligns with a broad body of empirical evidence suggesting that knowledge exchange tends 
to follow a non-linear pattern with respect to proximity. Specifically, the benefits of proximity 
are maximized at intermediate levels, when firms are sufficiently close to facilitate mutual 
understanding and interaction, but not so similar as to limit the diversity of ideas or induce 
redundancy (Kok et al., 2020; Marra et al., 2019, 2024). When proximity is too low, cognitive 
gaps hinder effective absorption of new ideas and information. Conversely, when proximity 
is too high, the overlap in capabilities and knowledge bases may reduce opportunities for 
novel combinations and learning. The inverted-U transformation thus captures this dynamic, 
reflecting how moderate levels of proximity are most conducive to innovation and 
performance gains. 
Accordingly, we estimate a spatial weight matrix (𝑊), assumed to be exogenous and 
constructed using a hyperbolic function. The diagonal elements are set to zero. Moreover, 
if two firms i and j exhibit either very low or very high cosine similarity, the corresponding 
weight 𝑤!" is set to zero. Following the rationale of Marra et al. (2024), since intermediate 
levels of cosine similarity are likely to have the strongest impact on adjacency and spillover 
effects, 𝑤!" increases toward one as similarity approaches the third quartile of its distribution. 
Beyond this point—both below and above—the adjacency weight decreases. In practical 
terms, the conversion from semantic proximity to adjacency follows a Gaussian kernel 
centered around the third quartile of the cosine similarity distribution: 
 

𝑤!" = 𝑒𝑥𝑝 '− #
$
)%!"
&
*
$
+    	 		 	 	 	 	 	 	 	 	 [1] 
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where distance 𝑑!" 	is the difference between the cosine similarity value and the third quartile 
value (which corresponds to the maximum adjacency), 𝛾 is the bandwidth, settled to reach 
zero adjacency in correspondence of maximum value of cosine similarity (one) and for the 
values lower than the second quartile of the distribution. 
This transformation aligns with a substantial body of empirical evidence indicating that 
knowledge exchange often follows a non-linear relationship with proximity. Specifically, the 
benefits of proximity are maximized at intermediate levels: when firms are close enough to 
enable mutual understanding and interaction, yet not so similar as to restrict diversity of 
perspectives or lead to redundancy (Kok et al., 2020; Marra et al., 2019, 2024). At low levels 
of proximity, cognitive and communicative gaps may impede knowledge absorption; at very 
high levels, excessive similarity can reduce opportunities for novel recombination and 
learning. The inverted-U transformation reflects this dynamic, capturing how moderate 
proximity tends to foster the most favorable conditions for innovation and performance 
improvement. 
 
4.2. The combination of the geographical and semantic proximity matrices 
The reliance on purely geographical proximity matrices is a widespread practice in spatial 
econometric modeling (Hazir and Autant-Bernard, 2014; Ter-Wal, 2013). Corrado and 
Fingleton (2012) emphasize that while such matrices have the significant advantage of being 
exogenous, researchers should always strive to incorporate more complexity into the spatial 
framework. This could include elements such as knowledge flows, social interactions, trade 
in goods and services, and other factors that enrich the understanding of proximity and its 
impact on economic and innovation performance. 
In recent studies, researchers have developed various approaches to enhance spatial 
econometric models by building hybrid spatial weight matrices (𝑊), combining multiple 
dimensions of proximity (Harris et al., 2011). Parent and LeSage (2008) argue that 
combining geographical proximity with other types of proximity can provide deeper insights 
into knowledge spillovers than using geographical proximity alone. More specifically, Autant-
Bernard (2012) suggests that adding a semantic proximity matrix to the geographical matrix 
can shed light on the mechanisms through which knowledge flows occur. 
One approach to incorporate multiple proximity dimensions is through ‘higher-order’ models, 
where multiple spatial lags of the dependent variable are used, each relying on a different 
𝑊 matrix (Lacombe, 2004; Li and Liu, 2010). However, these models can encounter 
estimation challenges due to the interaction of spatial parameters associated with different 
structures. This interplay complicates both accurate estimation and the interpretation of 
results (LeSage and Pace, 2011; Elhorst et al., 2011).  
In this study, interpretability is considered a key criterion in selecting the most appropriate 
modeling approach. Accordingly, we adopt the convex combination framework, which allows 
for the integration of multiple proximity structures, each associated with its own parameter 
that reflects its relative contribution (Debrasy and LeSage, 2021).  
The methodology follows Debarsy and LeSage (2021; 2022). They propose, drawing on 
Pace and LeSage (2010) and Hazir et al. (2018), a model that combines different 𝑊 matrices 
through a convex combination. This approach avoids many of the complications found in 
higher-order models. The scalar weights assigned to each matrix must be positive and sum 
to one. In our case, both the geographical and semantic proximity matrices are treated as 
exogenous and row normalized. Since a convex combination of row normalized matrices 
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remains row normalized, standard spatial model specifications and estimation methods can 
be applied, with the spatial parameters bounded between 1/𝜆'!( and 1, where 𝜆'!( is the 
smallest eigenvalue of the matrix 𝑊 (Debarsy and LeSage, 2018; 2022). In such a way, the 
parameters associated with each matrix in the convex combination indicate the relative 
importance of each proximity matrix (Debarsy and LeSage, 2021). 
Accordingly, the combined 𝑊 matrix is obtained as:  
 
𝑊 = 𝜑#𝐵# + 𝜑$𝐵$		 	 	 	 	 	 	 	 	 	 		 [2] 

𝑤𝑖𝑡ℎ	8 𝜑!
$

!)#
= 1 → 	𝜑$ = (1 − 𝜑#)	

 
where 𝐵# is the geographical proximity matrix and 𝐵$ is the semantic proximity one.  
The resulting matrix is then employed within spatial econometric specifications to model 
interactions between neighbouring units. The intensity of interaction between any two 
generic units, i and j, is represented by the corresponding element of the spatial weight 
matrix 𝑊, denoted as 𝑤!". As defined in Equation [2], this value is computed as follows: 

 
𝑤!" = 𝜑# ∗ 𝑏1!" + 𝜑$ ∗ 𝑏2!"  

 
where 𝑏1 and 𝑏2 are the spatial structures corresponding to different proximity matrices 
(e.g., geographical and semantic), and 𝜑# and 𝜑$ are their associated weights indicating 
relative importance. 
To enhance understanding of the construction process for matrix 𝑊, we provide additional 
details, also through a numerical example, in Appendix. 
To ensure a proper transition between the physical proximity and the combined one, in which 
the semantic structure is inserted, in our application we follow a two-step approach. First, 
we confirm that the geographical distribution of firms is significant according to a Moran’s 
test on the OLS residuals (King, 1981). Once this was established, we proceeded to 
combine geographical and semantic proximities in a single spatial weight matrix (𝑊), using 
a convex combination of the two. 
While the combined use of geographical and semantic proximity matrices offers a richer 
understanding of inter-firm spillovers, it is important to acknowledge a few methodological 
limitations. First, the convex combination of the two proximity matrices introduces a level of 
complexity in interpretation. Although this method allows us to capture hybrid forms of 
proximity, the relative weights assigned to each matrix (𝜑#and 𝜑$) must be interpreted with 
caution, as they may be influenced by the underlying structure of the data. Second, as with 
any spatial model, parameter sensitivity may be a concern when combining multiple 
adjacency structures. Although we perform robustness checks and validate our model 
against alternative specifications, these issues remain areas for further exploration in future 
research. 
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4.3. Model specification  
To choose the best model specification, it is standard practice to start with an Ordinary Least 
Squares (OLS) regression and then assess whether spatial interaction effects need to be 
incorporated. In recent spatial econometrics, the Spatial Durbin Model (SDM) is widely 
recommended due to its ability to account for potential biases caused by omitted variables 
(Elhorst, 2010; LeSage, 2014; LeSage and Pace, 2009). The SDM effectively captures both 
endogenous spatial effects (represented as 𝑊𝑌) and exogenous spatial effects (represented 
as 𝑊𝑋), which allow for the identification of global and local knowledge spillovers, 
respectively. 
Following the methodologies of Debarsy and LeSage (2018) and Hazir et al. (2018), we 
adopt the SDM as a starting point. This model provides a robust framework for analyzing 
the interplay of spatial factors, and its flexibility in handling multiple proximity dimensions 
makes it suitable for investigating knowledge spillovers between firms. 
In matrix notation, we consider the SDM as:  
 
𝑦= 𝜌𝑊𝑦+𝛽𝑋+𝜃𝑊𝑋+𝜀           [3] 
𝑤𝑖𝑡ℎ			𝑊 = 𝜑#𝐵# + 𝜑$𝐵$ 
 
where y is the vector of sales growth rates (∆_𝑆𝑎𝑙𝑒𝑠) for the each firm between 2022 and 
2023 (Lu et al., 2021); 𝛽 is the parameters’ vector related to each of the covariates; 𝜌 is the 
autocorrelation parameter for the dependent variable, indicating the magnitude of the mutual 
influence between neighbours, while the vector of parameters 𝜃 measures the influence of 
the covariates over the neighbours’ dependent variable; ε is the error term. The matrix 𝑋 
includes 616 units and 3 variables, namely: initial turnover (𝑆𝑎𝑙𝑒𝑠_𝑡0), used as a proxy to 
identify scaleups (Lindelöf and Löfsten, 2004), average number of employees (𝐸𝑚𝑝𝑙𝑜), 
calculated as the average number of employees in the observed period and serving as a 
proxy for the firm’s knowledge base, with each employee contributing distinct expertise 
(Balsmeier et al., 2014; Tubiana et al., 2022), and growth stage (𝑆𝑡𝑎𝑟𝑡𝑢𝑝) to distinguish 
between early-stage and more mature firms (Rydehell et al., 2019; Guerrero et al., 2023).  
The correlation between these variables reaches its maximum for the couple 𝑆𝑎𝑙𝑒𝑠_𝑡0 and 
𝐸𝑚𝑝𝑙𝑜, namely 0.38, circumstance that allows to exclude possible problems of 
multicollinearity. 
The SDM nests other spatial models like the Spatial Lag Model (SLM) and the Spatial Lag 
of X (SLX). Notably, the SLX model focuses on exogenous spatial interaction effects (𝑊𝑋), 
which are particularly relevant to our study. There is a strong case for considering the SLX 
model, as Gibbons and Overman (2012) argue that the reduced form of the SDM can hardly 
be distinguished from a model that only includes first-order exogenous interaction effects, 
like the SLX model. Moreover, Elhorst (2017) advocates for models that prioritize exogenous 
interaction effects over endogenous ones, while Corrado and Fingleton (2012) suggest 
using exogenous effects because endogenous interactions (𝑊𝑌) may obscure the true 
impact of omitted spatially dependent variables, potentially driving to misleading 
interpretations. 
In this work, we employ the SLX model as: 
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𝑦= 𝛽𝑋+𝜃𝑊𝑋+𝜀             [4] 
𝑤𝑖𝑡ℎ			𝑊 = 𝜑#𝐵# + 𝜑$𝐵$ 
 
In terms of interpretation and computational efficiency, Halleck Vega and Elhorst (2015) 
argue that the SLX model offers a significant advantage due to its simplicity. Unlike the SDM, 
which requires the computation of both direct and indirect impacts derived from the partial 
derivatives matrix of the expected value of 𝑦 concerning each explanatory variable (LeSage 
and Pace, 2009), the SLX model allows for immediate interpretation of its coefficients. The 
direct effects (𝛽) and indirect effects (𝜃) can be directly understood without the need for 
further manipulation (Elhorst, 2014). 
To determine the most appropriate model, Elhorst (2014) suggests a top-down approach, 
where the most general model, such as the SDM, is first estimated using maximum 
likelihood. From there, a likelihood ratio test (LR-test) can be conducted to assess whether 
a simpler nested model, such as the SLX, provides an adequate fit, potentially reducing 
model complexity without sacrificing explanatory power. 
The LR-test takes the following form: 
 
−2(𝐿𝑜𝑔𝐿*+, − 𝐿𝑜𝑔𝐿-(*+,)           [5] 
 
where  𝐿𝑜𝑔𝐿*+, represents the log-likelihood of the nested (restricted, in this case the SLX) 
model, and 𝐿𝑜𝑔𝐿-(*+, represents the log-likelihood of the most general (unrestricted, here 
the SDM) model. This statistic follows a Chi-squared distribution, with the degrees of 
freedom corresponding to the number of restrictions applied. The null hypothesis of the test 
posits that the most general and complex model does not outperform the simpler and 
restricted one, which is than advisable. 
To estimate the model parameters, we follow the approach outlined by Hazir et al. (2018). 
This process involves two steps. In the first step, we assess the likelihood function over a 
grid of values for the convex combination parameters 𝜑# and 𝜑$. The optimal combination, 
which corresponds to the highest likelihood, is then used in the second step to estimate the 
remaining model parameters. Debarsy and LeSage (2018) propose using Bayesian 
methods for parameter estimation, suggesting that the Hazir et al. (2018) approach can lead 
to biases in the scalar summary measures of impacts developed by LeSage and Pace 
(2009). However, our case involves a combination of only two parameters, and the SLX 
model does not require calculating these impacts. Therefore, we opted for the Hazir et al. 
(2018) procedure due to its simplicity, as it allows us to employ conventional maximum 
likelihood estimation methods (Debarsy and LeSage, 2022). 
Once the optimal convex combination is established according to the method described, we 
conduct an LR-test between the optimal SDM and the optimal SLX model to determine which 
is most suitable. Additionally, we aim to contribute to the literature on convex combinations 
by proposing the use of the LR-test to differentiate between models using a pure 
geographical proximity matrix and those with a combined adjacency matrix. It is important 
to note that LR-tests can only be applied when comparing nested models. Therefore, they 
cannot formally be used to test models with different weights matrices (Elhorst, 2010). 
However, with a convex combination matrix, the formula [4] can be rewritten as follows: 
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𝑦= 	𝛽𝑋 + 𝜃(𝜑#𝐵# + 𝜑$𝐵$)𝑋 + 𝜀		 	 	 	 	 	 	 	 	 [6] 
 
where the case of pure geographical proximity is a restricted case in which 𝜑$ = 0.  
Therefore, the geographical and the combined models can be considered as nested, and a 
LR-test can be performed with one degree of freedom.  
 
 
5. Discussion 
The following subsections first present the results of the models under different 
specifications, and then provide a series of robustness checks conducted to reinforce the 
main findings. 
 
5.1. Results 
To clarify the role of geographical proximity, we first estimate an OLS regression using the 
variables introduced in the previous section. We then combine the geographical structure 
with the semantic dimension. 
The importance of the physical structure is supported by a Moran’s I test on the residuals 
(King, 1981), which indicates the presence of spatial autocorrelation. 
The null hypothesis of no spatial autocorrelation is rejected at a 5% confidence level, with a 
p-value of 0.009. The tested geographical adjacency matrix is based on the nearest-
neighbour method, with 40 neighbours per unit, as this matrix showed the highest 
significance according to Moran’s I statistic and a density comparable to that proposed by 
Hazir et al. (2018). 
Having established that the geographical distribution of firms is significant, we proceed with 
the estimation process for the convex combination parameters to construct the 𝑊 matrix in 
which both proximities act together. Table 5 presents the grid of values of the weights 
assigned to geographical proximity (𝜑#) and semantic proximity (𝜑$). For each pair of 
weights, we estimate the model and calculate the log-likelihood. The optimal combination, 
based on the highest log-likelihood, is highlighted in bold. As a check, the Newton’s 
algorithm performed in R confirms that there is no other maximum in the log-likelihood 
function. 
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Table 5. Loglikelihood of SLX and SDM for each convex combination varying 𝜑# and 𝜑$. 
 

𝝋𝟏	(geographical) 𝝋𝟐	(semantic) Loglikelihood SLX Loglikelihood SDM 
1 0 625.2261 625.2265 

0.9 0.1 626.5937 626.5974 
0.8 0.2 627.4345 627.4368 

0.79 0.21 627.4806 627.4825 
0.78 0.22 627.5191 627.5206 
0.77 0.23 627.5498 627.5509 
0.76 0.24 627.5726 627.5733 
0.75 0.25 627.5876 627.5879 
0.74 0.26 627.5946 627.5948 
0.73 0.27 627.5939 627.5939 
0.72 0.28 627.5855 627.5855 
0.71 0.29 627.5696 627.5697 
0.7 0.3 627.5464 627.5468 

0.69 0.31 627.5162 627.5171 
0.68 0.32 627.4792 627.4808 
0.67 0.33 627.4359 627.4383 
0.66 0.34 627.3865 627.3900 
0.6 0.4 626.9855 626.9995 
0.5 0.5 626.0924 626.1331 
0.4 0.6  625.1670 625.2279 
0.3 0.7 624.3462 624.4104 
0.2 0.8 623.5524 623.7166 
0.1 0.9 623.1059 623.1448 
0 1 622.6553 622.6796 

  
 
For both the SDM and SLX models, the optimal convex combination remains the same, with 
𝜑# equal to 0.74 and, consequently, 𝜑$ equal to 0.26. In the procedure implemented, 
following the approach of Hazir et al. (2018), we define a grid of values, reducing 𝜑# by 0.1 
each time. Subsequently, we refine the grid using 0.01 intervals around the values that yield 
the highest likelihood (Figure 2).  
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Figure 2: Loglikelihood of SLX combined model varying 𝜑#. 

 
To determine the most appropriate spatial specification between the SDM and SLX models, 
we conduct an LR-test on the two models estimated via maximum likelihood using the 
optimal combination of 𝜑# and 𝜑$. Since the difference between the loglikelihoods of SDM 
and SLX at the optimal combination is minimal (0.0002), with a test value is 0.0004, this 
means that the null hypothesis cannot be rejected at any confidence level. Since the SDM 
does not significantly outperform the SLX, the latter is preferable due to its simplicity and 
ease of interpretation. For completeness, the SLX model outperforms OLS, as shown by the 
LR-test, which takes a value of 17.208 with 3 degrees of freedom, exceeding the 5% critical 
value of 7.81. 
As outlined in Section 4, we also aim to distinguish between the model with pure 
geographical proximity and the model using the combined 𝑊 matrix, via the LR-test. To do 
this, we assess whether the SLX model estimated with the optimal combination of 𝜑# and 
𝜑$ outperforms the SLX model restricted to 𝜑$ = 0. The result yields a test statistic of 4.74, 
exceeding the 5% critical value of 3.84 for the Chi-squared distribution with 1 degree of 
freedom. Thus, the null hypothesis is rejected, indicating that the model with the combined 
𝑊 matrix outperforms the one based solely on geographical adjacency. This result confirms 
the importance of non-geographical proximity, which accounts for more than a quarter of the 
combined effect, while geographical proximity remains predominant, contributing over 70% 
of the weight. 
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Table 6. Estimation results of OLS, SLX_geo (𝜑$ = 0), and SLX_combined. 
 

Variables OLS SLX_geo SLX_combined 
    
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  0.2871*** -0.4874* -0.6424** 

𝑆𝑎𝑙𝑒𝑠_𝑡0  -0.0374*** -0.0366*** -0.0373*** 

𝐸𝑚𝑝𝑙𝑜  0.000006* 0.000006* 0.000006* 

𝑆𝑡𝑎𝑟𝑡𝑢𝑝  -0.0535*** -0.05246*** -0.0512*** 

𝐿𝑎𝑔_𝑆𝑎𝑙𝑒𝑠_𝑡0   0.1076*** 0.1298*** 

𝐿𝑎𝑔_𝐸𝑚𝑝𝑙𝑜   -0.00005 -0.00002 

𝐿𝑎𝑔_𝑆𝑡𝑎𝑟𝑡𝑢𝑝   0.1608** 0.1871*** 

    

R-squared 0.1067 0.1246 0.1313 

Loglikelihood 618.9906 625.2261 627.5946 

Note: *** p<0.005; **p<0.01; *p<0.05. 
 
The model estimations yield several noteworthy findings. In the combined specification, the 
coefficients show the expected signs and statistical significance, reinforcing previous 
insights into the moderating effects of initial firm size and growth stage on firm performance 
(Rydehell et al., 2019; Guerrero et al., 2023). Additionally, the number of employees exhibits 
a positive effect, consistent with the idea that workforce size reflects a firm’s knowledge 
base and operational capacity (Balsmeier et al., 2014). 
Although spatial lag coefficients primarily capture spatial autocorrelation, which may 
indicate, but does not conclusively prove, the presence of spillover effects, we emphasize, 
in what follows, the economic interpretation that spatial dependence suggests potential 
spillovers. We are aware that, from a technical standpoint, this is a somewhat overstated 
interpretation, as spatial dependence alone does not constitute definitive evidence of 
spillovers. 
Interestingly, while being a startup is associated with a negative direct effect on 
performance, we observe positive spillover effects, supporting the idea that startups can 
generate valuable externalities that enhance neighbouring firms’ growth (Lindelöf and 
Löfsten, 2004; Kaneva et al., 2023; Marra et al., 2024). This finding highlights the importance 
of considering startups not only as individual actors but also as contributors to the broader 
knowledge environment. Moreover, the positive spillover associated with firms’ initial size 
supports the knowledge equilibrium argument (Grillitsch and Nilsson, 2019), suggesting that 
larger firms may help balance performance across the ecosystem over time through 
knowledge diffusion. 
Given the distinct structure of Sweden’s tech ecosystem, marked by both densely populated 
urban hubs such as Stockholm, Gothenburg, and Malmö, and more geographically 
dispersed innovation hotspots, these findings carry important policy implications. First, they 
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underline the need for spatially differentiated innovation policies. In high-density areas, 
policies might focus on maximizing the externalities produced by startups by enhancing 
collaboration spaces, funding early-stage ventures, and supporting mentorship networks. In 
more peripheral areas, spillovers from larger firms could be leveraged through incentives for 
co-location, shared R&D infrastructure, and digital platforms to connect firms operating at 
cognitive, industrial or technological proximity. 
Our framework, which combines geographical and semantic proximity, allows policymakers 
to identify potential spillover pathways that extend beyond physical closeness. This 
adaptability makes it particularly well-suited for informing targeted and place-sensitive 
innovation strategies. By incorporating both dimensions of proximity, our approach offers a 
preliminary understanding of how firm characteristics shape ecosystem dynamics, enabling 
evidence-based policies tailored to the specific spatial and structural features of Sweden’s 
technology sector. 
 
5.2. Robustness checks 
In empirical contexts such as the one presented here, where the estimated coefficients are 
consistent in sign and magnitude across both OLS and geographic SLX specifications, and 
align with theoretical expectations, confidence in the validity of the results is generally well-
founded (Lu and White, 2014). 
Further validation of model reliability is performed through a robustness analysis aimed at 
assessing the stability of the core coefficients. To ensure their robustness, we check their 
sensitivity to different model specifications and to the inclusion of additional explanatory 
variables.  
Table 7 presents the estimation results for three different spatial econometric models: the 
SDM (Model 1), the SLM (Model 2), and the SLX (Model 3). In Model 3, we include two 
additional control variables: the firm’s age (𝐴𝑔𝑒), as recommended by several studies such 
as, for example, Coad et al. (2017), and a dummy variable indicating whether the firm 
operates in a business-to-business (𝐵2𝐵) context, given that firms engaging with other 
businesses are more likely to foster reciprocal exchanges of knowledge, ideas, and 
opportunities (Cappelli and Cucculelli, 2024).  
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Table 7. Robustness check. Direct and indirect impacts of model 1 (combined SDM), 
model 2 (combined SLM), and model 3 (combined SLX with 2 added variables). 

 
 Model 1 Model 2 Model 3 
 
Direct Impacts    

 
𝑆𝑎𝑙𝑒𝑠_𝑡0  

 
-0.0376*** 

 
-0.0313*** 

 
-0.0386*** 

𝐸𝑚𝑝𝑙𝑜  0.000006** 0.000006** 0.000004* 
𝑆𝑡𝑎𝑟𝑡𝑢𝑝  -0.00512*** -0.00521*** -0.00505*** 
𝐴𝑔𝑒    0.00043 
𝐵2𝐵    0.00064 
 
Indirect impacts    

 
𝑆𝑎𝑙𝑒𝑠_𝑡0  

 
0.122*** 

 
0.121*** 

 
0.123** 

𝐸𝑚𝑝𝑙𝑜  -0.000015 -0.000011 -0.00001 
𝑆𝑡𝑎𝑟𝑡𝑢𝑝  0.170** 0.167** 0.173*** 
𝐴𝑔𝑒    -0.00007 
𝐵2𝐵    -0.00192 
    

Note: *** p<0.005; ** p<0.01; *p<0.05. 
 
Across all models, the estimated coefficients maintain the same sign and exhibit very similar 
magnitudes, with no substantial differences observed. This consistency supports the 
robustness of our findings. 
An additional issue that is often overlooked in spatial econometric analysis is endogeneity. 
As noted by Halleck-Vega and Elhorst (2015), a notable advantage of the SLX model is that 
it permits the use of conventional non-spatial econometric techniques, such as the Wu-
Hausman test, for detecting endogeneity. We conduct the Wu-Hausman test, where the null 
hypothesis states that the regressors are exogenous. 
Following standard recommendations in the spatial econometrics literature (Kelejian and 
Prucha, 1998; Baltagi et al., 2014), we use as instruments the first-order spatial lag of the 
regressors (𝑊𝑋, internal instrument), along with their second and third spatial lags (W²X	and 
W³X, respectively). The test yields an F-statistic of 1.229 with 3 and 606 degrees of freedom, 
corresponding to a p-value of 0.298. This result indicates that the null hypothesis of 
exogeneity cannot be rejected, thereby supporting the validity of our model and excluding 
the presence of endogenous regressors. 
The detection of spatial patterns in OLS residuals may indicate the presence of spatial 
heterogeneity in addition to spatial dependence. Spatial tests are known to capture both 
effects, making it essential to distinguish between them. According to Anselin (1988), 
heteroskedasticity in the residuals of spatial models may often arise from unobserved spatial 
heterogeneity: namely, variations in the data-generating process across spatial units that 
lead to non-constant coefficients. 
To address this potential issue, we apply a scan test for spatial groupwise heteroscedasticity 
(SGWH), following the approach proposed by Chasco et al. (2018), which is based on the 
spatial scan methodology developed by Kulldorff et al. (2009). The null hypothesis of this 
test is that the residuals from the spatial model are independently and identically distributed 
and follow a normal distribution, while the alternative hypothesis allows for heterogeneity 
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between regional clusters. The test is implemented using the SpatialScan function in R 
(Frévent et al., 2022). The result indicates that the null hypothesis cannot be rejected at the 
1% significance level, thus ruling out significant spatial heterogeneity in the residuals and 
reinforcing the robustness of the estimated results. 
Although heterogeneity is not statistically significant, due to the distinct geographical 
concentration of Sweden’s tech firms, we conducted an additional check. The SLX model 
was estimated first for Stockholm and then for a broader subset including Gothenburg and 
Malmö. The comparison of these models with the overall SLX model based on geographical 
proximity yields comparable results (Table 8). 
 
Table 8. Estimation results of SLX geographical models estimated for Sweden (model A), 

Stockholm, Gothenburg and Malmö (model B), and Stockholm (model C) subsets. 
 

Variables model A model B model C 
    
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  -0.4874* -0.4296* -0.2964** 

𝑆𝑎𝑙𝑒𝑠_𝑡0  -0.0366*** -0.0432*** -0.0583*** 

𝐸𝑚𝑝𝑙𝑜  0.000006* 0.000003* 0.000011* 

𝑆𝑡𝑎𝑟𝑡𝑢𝑝  -0.05246*** -0.06670*** -0.0801*** 

𝐿𝑎𝑔_𝑆𝑎𝑙𝑒𝑠_𝑡0  0.1076*** 0.1069*** 0.1099*** 

𝐿𝑎𝑔_𝐸𝑚𝑝𝑙𝑜  -0.00005 -0.00003 -0.00011 

𝐿𝑎𝑔_𝑆𝑡𝑎𝑟𝑡𝑢𝑝  0.1608** 0.1533** 0.0917* 

Note: *** p<0.01; ** p<0.05; *p<0.1. 
 
 
 
6. Conclusions 
Our purpose in this paper was to combine a geographical proximity matrix with a semantic 
matrix to explore knowledge spillovers between firms. The semantic proximity matrix was 
built using web-derived data, capturing firms’ expertise related to industrial specializations 
and technologies.  
We tested that companies generate knowledge spillovers that positively affect the 
performance of neighbouring firms. Our findings showed that a firm’s economic performance 
is shaped not only by its intrinsic characteristics, but more notably by the spillover effects 
that arise from neighbouring units in both geographical and semantic proximity. These 
effects were most pronounced when both forms of proximity were combined optimally.  
The use of web-derived textual data has allowed us to gather information along two key 
dimensions: what firms do (that is, their industrial specializations) and the technologies they 
employ, along with the underlying expertise embedded in their workforce. These dimensions 
are not independent but deeply interconnected. A firm’s industrial focus influences the 
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technologies it adopts, and vice versa, with both dimensions shaped by the firm’s internal 
knowledge base and expertise. This intersection of industrial, technological, and cognitive 
dimensions provides a richer, more integrated perspective, enhancing our understanding of 
how knowledge flows emerge and how different forms of proximity support innovation. 
From a policymaking standpoint, these dimensions are vital when developing strategies to 
drive economic growth (McCann and Ortega-Argilés, 2016). Understanding how these 
proximities represent firms’ interactions allows policymakers to design more effective 
policies: potential interventions include promoting R&D in related sectors, encouraging the 
formation of innovation clusters, and strengthening regional industrial and technological 
infrastructures (Montresor et al., 2023; Losurdo et al., 2019). As shown throughout the 
paper, the wide range of applications that leverage textual data to create firm profiles and 
novel proximity measures demonstrates the strength of these emerging methods. Their 
value lies not only in the richness and timeliness of the data they elaborate, but also in the 
flexibility they offer, allowing researchers and policymakers to tailor insights to specific 
purposes. This adaptability makes such approaches particularly powerful for informing 
targeted innovation strategies and evidence-based policy design. 
However, this study is not without limitations.  
Firstly, the dataset used, while valuable, restricted the number of variables that could be 
applied in the statistical model due to limited data on companies, particularly because many 
are startups in the early or seed stages. This limitation influenced our variable selection and 
model configuration. However, it also strengthens the contribution of the analysis, as it sheds 
light on the innovative startup phenomenon, which is typically difficult to capture due to the 
scarcity of reliable data in this sector (Giuliani et al., 2024). Thus, despite these constraints, 
the study provides insights into a segment that is often underexplored. 
Secondly, we are reconsidering the adequacy of cosine similarity for estimating non-
geographical proximity and are exploring alternative text-based methods. As seen, cosine 
similarity necessitated some preliminary technical steps to smooth out the strict co-
occurrence of keywords: by employing topic modeling, which groups words into broader 
themes and generated new keywords, and semantic enrichment, which incorporates 
contextual understanding, we only partially mitigated the limitations of the adopted 
technique. The result was a less sophisticated measure of semantic proximity. We look for 
a more refined technique to fully capture the nuances of semantic similarity, which may 
‘understand’ the relationships between concepts, beyond mere keyword matching (Lara-
Clares et al., 2021). This would allow to propose a more streamlined methodology, reducing 
the need for multiple steps and minimizing approximation errors. 
Thirdly, the choice to apply our analysis to firms across an entire country rather than a more 
localized area, such as a region or metropolitan area, may have somewhat weakened our 
spillover effects. In a more localized context, not only physical distances are significant 
(Bereitschaft, 2019), but semantic distances as well (Fritz and Manduca, 2021). Sweden 
has a diversified economy, which reduces the companies’ common base of expertise on 
industrial specializations and adopted technologies necessary to foster knowledge 
exchange and collaborative interactions (Grillitsch and Nilsson, 2019). 
Fourthly, a key limitation of our analysis is the difficulty in disentangling overlapping 
knowledge spillovers from startups and larger, more established firms. While our model 
identifies statistically significant spillover patterns, these mechanisms likely coexist and 
interact. Startups may contribute disruptive, experimental knowledge, while incumbents 
provide codified knowledge and support incremental innovation. This complexity cautions 
against attributing performance effects to a single type of actor. For policymakers, this 
underscores the need for balanced strategies that support both entrepreneurial dynamism 
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and organizational stability. Likewise, firms should recognize that proximity-related 
knowledge benefits often arise from multiple, interwoven sources. More specifically, this 
implies that firms should strategically assess not only the presence of startups or incumbents 
in their vicinity, but also the type of knowledge interactions these actors facilitate. Future 
research could address this by using more detailed firm classifications, network data, or 
longitudinal designs to better capture the evolving nature of spillovers across time and 
regions. 
All four of the above-mentioned limitations represent valuable avenues for future research. 
We plan to explore these directions further in order to contribute to the ongoing debate with 
additional evidence. 
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Appendix  

The convex combined adjacency matrix W is constructed starting from two similarity matrix 
𝐵# and 𝐵$, which are based respectively on geographical and semantic proximities.  

In formulas: 

 

𝑊 = 𝜑#𝐵# + 𝜑$𝐵$ = 𝜑# ∗ `

0 𝑏1#$ ⋯ 𝑏1#(
𝑏1$#
⋮ ⋱ 𝑏1$(

⋮
𝑏1(# 𝑏1($ ⋯ 0

d+ 𝜑$ ∗ `

0 𝑏2#$ ⋯ 𝑏2#(
𝑏2$#
⋮ ⋱ 𝑏2$(

⋮
𝑏2(# 𝑏2($ ⋯ 0

d = 

 

`

0 𝜑# ∗ 𝑏1#$ ⋯ 𝜑# ∗ 𝑏1#(
𝜑# ∗ 𝑏1$#

⋮ ⋱ 𝜑# ∗ 𝑏1$(
⋮

𝜑# ∗ 𝑏1(# 𝜑# ∗ 𝑏1($ ⋯ 0

d +`

0 𝜑$ ∗ 𝑏2#$ ⋯ 𝜑$ ∗ 𝑏2#(
𝜑$ ∗ 𝑏2$#

⋮ ⋱ 𝜑$ ∗ 𝑏2$(
⋮

𝜑$ ∗ 𝑏2(# 𝜑$ ∗ 𝑏2($ ⋯ 0

d = 

 

`

0 𝜑# ∗ 𝑏1#$ + 𝜑$ ∗ 𝑏2#$ ⋯ 𝜑# ∗ 𝑏1#( + 𝜑$ ∗ 𝑏2#(
𝜑# ∗ 𝑏1$# + 𝜑$ ∗ 𝑏2$#

⋮ ⋱ 𝜑# ∗ 𝑏1$( + 𝜑$ ∗ 𝑏2$(
⋮

𝜑# ∗ 𝑏1(# + 𝜑$ ∗ 𝑏2(# 𝜑# ∗ 𝑏1($ + 𝜑$ ∗ 𝑏2($ ⋯ 0

d	 

 

As a numerical example, giving a geographical nearest neighbor matrix, with 𝑘 = 	50  
neighbors 

 

𝐵# = g
0 0 ⋯ 0.02
0.02
⋮ ⋱ 0

⋮
0.02 0.02 ⋯ 0

i;  

 

and a semantic proximity matrix 

  

𝐵$ = g
0 0.1 ⋯ 0.42
0.15
⋮ ⋱ 0

⋮
0.60 0.02 ⋯ 0

i;   

 

We estimate the convex combined parameters as: 

 
𝜑# = 0.74	 and 𝜑$ = 0.26. 

 

Accordingly, we obtain: 
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𝑊 = 𝜑#𝐵# + 𝜑$𝐵$ = 0.74 ∗ g
0 0 ⋯ 0.02
0.02
⋮ ⋱ 0

⋮
0.02 0.02 ⋯ 0

i + 0.26 ∗ g
0 0.1 ⋯ 0.42
0.15
⋮ ⋱ 0

⋮
0.60 0.02 ⋯ 0

i = 

 

g
0 0 ⋯ 0.015

0.015
⋮ ⋱ 0

⋮
0.015 0.015 ⋯ 0

i +g
0 0.026 ⋯ 0.109

0.039
⋮ ⋱ 0

⋮
0.156 0.005 ⋯ 0

i = 

 

g
0 0.026 ⋯ 0.124

0.054
⋮ ⋱ 0

⋮
0.171 0.02 ⋯ 0

i	. 
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